Abstract

Anaerobic biological secondary treatment has the potential to substantially reduce the energy cost and footprint of wastewater treatment. However, for utilities seeking to meet future water demand through potable reuse, the compatibility of anaerobically treated secondary effluent with potable reuse trains has not been evaluated. This study characterized the effects of different combinations of chloramines, ozone, and biological activated carbon (BAC), applied as pretreatments to mitigate organic chemical fouling of reverse osmosis (RO) membranes, and the production of 43 disinfection byproducts (DBPs). The study employed effluent from a pilot-scale anaerobic reactor and soluble microbial products (SMPs) generated from a synthetic wastewater. Ozonation alone minimized RO flux decline by rendering the dissolved organic carbon (DOC) more hydrophilic. When combined with chloramination, ozone addition after chloramines maintained a higher RO flux. BAC treatment was ineffective for reducing the pressure and energy requirements for a set permeate flux. Regardless of pretreatment method prior to RO, the total DBP concentrations were <14 μg/L upstream of RO. After treatment by RO, the UV/hydrogen peroxide advanced oxidation process, and chloramination, the total DBP concentrations were ≤5 μg/L. When DBP concentrations were weighted by metrics of toxic potency, the total DBP calculated toxicity was 4-fold lower than observed previously in full-scale potable reuse facilities receiving aerobically treated secondary effluent. The RO fouling and DBP formation behavior of anaerobic SMPs were similar to that of the pilot-scale anaerobic effluent. The results of this study are promising, but more research is needed to evaluate whether anaerobic effluent is suitable as an influent to potable reuse trains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.