Abstract
In this study an academic Computational Fluid Dynamics (CFD) code, named Galatea-I, is described, which employs the Reynolds Averaged Navier–Stokes (RANS) equations along with the artificial compressibility method and the SST (Shear Stress Transport) turbulence model for the prediction of incompressible viscous flows. For the representation of the computational domain unstructured hybrid grids are utilized, composed of tetrahedral, prismatic and pyramidical elements, while for its discretization a node-centered finite-volume scheme is implemented. Galatea-I is enhanced with a parallelization method, which employs spatial domain decomposition, while the data exchange between processors/processes is performed with the use of the Message Passing Interface (MPI) protocol. In addition, a parallel agglomeration multigrid methodology has been incorporated to improve further its computational performance. The proposed code is validated against steady-state flow benchmark test cases, concerning laminar flow over a cubic cavity and a cylindrical surface, as well as turbulent flow over a rectangular wing with a NACA0012 airfoil. The obtained results, compared with these of corresponding reference solvers, reveal Galatea-I’s potential for simulation of inviscid, viscous laminar and turbulent incompressible flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.