Abstract

There is a growing trend of artificial intelligence (AI) applications in veterinary medicine, with the potential to assist veterinarians in clinical decisions. A commercially available, AI-based software program (AISP) for detecting common radiographic dental pathologies in dogs and cats was assessed for agreement with two human evaluators. Furcation bone loss, periapical lucency, resorptive lesion, retained tooth root, attachment (alveolar bone) loss and tooth fracture were assessed. The AISP does not attempt to diagnose or provide treatment recommendations, nor has it been trained to identify other types of radiographic pathology. Inter-rater reliability for detecting pathologies was measured by absolute percent agreement and Gwet's agreement coefficient. There was good to excellent inter-rater reliability among all raters, suggesting the AISP performs similarly at detecting the specified pathologies compared to human evaluators. Sensitivity and specificity for the AISP were assessed using human evaluators as the reference standard. The results revealed a trend of low sensitivity and high specificity, suggesting the AISP may produce a high rate of false negatives and may not be a good tool for initial screening. However, the low rate of false positives produced by the AISP suggests it may be beneficial as a "second set of eyes" because if it detects the specific pathology, there is a high likelihood that the pathology is present. With an understanding of the AISP, as an aid and not a substitute for veterinarians, the technology may increase dental radiography utilization and diagnostic potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.