Abstract

Recently the interest in solar thermal cooling has been growing for Air Conditioning (AC) applications. This paper presents an applied experimental and numerical evaluation of a novel triple-state sorption solar cooling module. The performance of a LiCl-H2O based sorption module (SM) for cooling/heating system with integration of an external energy storage has been evaluated. The dynamic behavior of the SM, which can be driven by solar energy, is presented. Two PCM assisted configurations of the SM have been studied herein; (i) PCM assisted sorption module for cooling applications (ii) PCM assisted sorption module for heating applications. Initially, an experimental investigation was carried out to evaluate the charging/discharging process of the SM without external energy storage. Secondly, the initial experimental configuration was modeled with a PCM integrated storage compartment. The PCM storage compartment was connected to the Condenser/Evaporator (C/E) of the SM. The temporal history of the sorption module's C/E and PCM storage, the cyclic and average performance in terms of cooling/heating capacity, cooling/heating COP, and the total efficiency were experimentally and numerically investigated. Furthermore, PCM charging/discharging power rate and solidification/melting process of the PCM in the integrated storage compartment to the SM were predicted by the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.