Abstract

Drilling is the most commonly applied method for hole making of fiber-reinforced materials owing to the need for structure joining. Delamination is the most common defect during drilling because of the heterogeneity of both the fibers and the matrix. The delamination, in general, is an irregular shape and size, containing long and fine breaks and cracks at the exit of the drilled hole, especially in the drilling of carbon-fiber-reinforced plastic (CFRP). On the other hand, a core–saw drill is designed to reduce the threat of chip removal in drilling composite materials. Since the thrust force of core–saw drill is distributed toward the periphery, the core–saw drill allows a larger critical thrust force than the twist drill at the onset of delamination when drilling composite materials. The aim of this paper is to present a novel approach of the equivalent delamination factor (Fed) to characterize drilling-induced delamination using a core–saw drill and compare it with the adjusted delamination factor (Fda) and the conventional delamination factor (Fa). The experimental results indicated that the Fed obtained is considered suitable for characterizing delamination at the exit of a hole after drilling CFRP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.