Abstract

C5/C6 tetraplegic patients and transhumeral amputees may be able to use voluntary shoulder motion as command signals for a functional electrical stimulation system or transhumeral prosthesis. Stereotyped relationships, termed "postural synergies," among the shoulder, forearm, and wrist joints emerge during goal-oriented reaching and transport movements as performed by able-bodied subjects. Thus, the posture of the shoulder can potentially be used to infer the desired posture of the elbow and forearm joints during reaching and transporting movements. We investigated how well able-bodied subjects could learn to use a noninvasive command scheme based on inferences from these postural synergies to control a simulated transhumeral prosthesis in a virtual reality task. We compared the performance of subjects using the inferential command scheme (ICS) with subjects operating the simulated prosthesis in virtual reality according to complete motion tracking of their actual arm and hand movements. Initially, subjects performed poorly with the ICS but improved rapidly with modest amounts of practice, eventually achieving performance only slightly less than subjects using complete motion tracking. Thus, inferring the desired movement of distal joints from voluntary shoulder movements appears to be an intuitive and noninvasive approach for obtaining command signals for prostheses to restore reaching and grasping functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.