Abstract
AbstractDistant Supervision is a relation extraction approach that allows automatic labeling of a dataset. However, this labeling introduces noise in the labels (e.g., when two entities in a sentence are automatically labeled with an invalid relation). Noise in labels makes difficult the relation extraction task. This noise is precisely one of the main challenges of this task. Until now, the methods that incorporate a previous noise reduction step do not evaluate the performance of this step. This paper evaluates the noise reduction using a new representation obtained with autoencoders. In addition, it was incoporated more information to the input of the autoencoder proposed in the state-of-the-art to improve the representation over which the noise is reduced. Also, three methods were proposed to select the instances considered as real. As a result, it was obtained the highest values of the area under the ROC curves using the improved input combined with state-of-the-art anomaly detection methods. Moreover, the three proposed selection methods significantly improve the existing method in the literature.KeywordsNoise reductionDistant supervisionAdversarial autoencodersData representation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.