Abstract

Lipases are the enzymes of choice for laundry detergent industries owing to their triglyceride removing ability from the soiled fabric which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In the present study, a partially purified bacterial lipase from Staphylococcus arlettae JPBW-1 isolated from the rock salt mine has been assessed for its triglyceride removing ability by developing a presoak solution so as to use lipase as an additive in laundry detergent formulations. The effects of selected surfactants, commercial detergents, and oxidizing agents on lipase stability were studied in a preliminary evaluation for its further usage in the industrial environment. Partially purified lipase has shown good stability in presence of surfactants, commercial detergents, and oxidizing agents. Washing efficiency has been found to be enhanced while using lipase with 0.5% nonionic detergent than the anioinic detergent. The wash performance using 0.5% wheel with 40 U lipase at 40°C in 45 min results in maximum oil removal (62%) from the soiled cotton fabric. Hence, the present study opens the new era in enzyme-based detergent sector for formulation of chemical-free detergent using alkaline bacterial lipase.

Highlights

  • Lipases are ubiquitous enzymes with industrial potential of synthesizing structural triglycerides, which serves as detergents and emulsifiers in nutrition and cosmetics [1]

  • Rathi et al [7] showed the application of bacterial lipase Burkholderia cepacia as an additive in detergent formulation which exhibits better stability towards commercial detergents and oxidizing agents in comparison to commercial Lipolase

  • Staphylococcus arlettae JPBW-1 was used for the lipase production, which was isolated from the one and only hotspring of India, Darang, HP, and deposited in MTCC, Chandigarh (India), as Staphylococcus arlettae JPBW-1 MTCC5589 maintained on Luria agar slants at 4∘C

Read more

Summary

Introduction

Lipases (triacylglycerol acyl hydrolase, E.C. 3.1.1.3.) are ubiquitous enzymes with industrial potential of synthesizing structural triglycerides, which serves as detergents and emulsifiers in nutrition and cosmetics [1]. Alkaline lipases in a detergent formulation should be stable over a broad range of temperature, pH and compatible with surfactants and oxidizing agents at lower concentrations with broad substrate specificity [4]. The detergent industries are relying on recombinant lipases (Lipex and Lipolase from Novozymes) for formulation of biodetergents due to their stability in presence of harsher detergent formulation ingredients such as surfactants and oxidizing agents [5]. Rathi et al [7] showed the application of bacterial lipase Burkholderia cepacia as an additive in detergent formulation which exhibits better stability towards commercial detergents and oxidizing agents in comparison to commercial Lipolase. Preliminarily,lipase compatibility studies with surfactants, oxidizing agents, and readily available commercial detergents have been checked and later tested for its washing efficiency for olive oil removal from soiled cotton fabric

Materials and Methods
Results and Discussion
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call