Abstract

Abstract. Tropospheric ammonia (NH3) is a threat to the environment and human health and is mainly emitted by agriculture. Ammonia volatilisation following application of nitrogen in the field accounts for more than 40 % of the total NH3 emissions in France. This represents a major loss of nitrogen use efficiency which needs to be reduced by appropriate agricultural practices. In this study we evaluate a novel method to infer NH3 volatilisation from small agronomic plots consisting of multiple treatments with repetition. The method is based on the combination of a set of NH3 diffusion sensors exposed for durations of 3 h to 1 week and a short-range atmospheric dispersion model, used to retrieve the emissions from each plot. The method is evaluated by mimicking NH3 emissions from an ensemble of nine plots with a resistance analogue–compensation point–surface exchange scheme over a yearly meteorological database separated into 28-day periods. A multifactorial simulation scheme is used to test the effects of sensor numbers and heights, plot dimensions, source strengths, and background concentrations on the quality of the inference method. We further demonstrate by theoretical considerations in the case of an isolated plot that inferring emissions with diffusion sensors integrating over daily periods will always lead to underestimations due to correlations between emissions and atmospheric transfer. We evaluated these underestimations as −8 % ± 6 % of the emissions for a typical western European climate. For multiple plots, we find that this method would lead to median underestimations of −16 % with an interquartile [−8–22 %] for two treatments differing by a factor of up to 20 and a control treatment with no emissions. We further evaluate the methodology for varying background concentrations and NH3 emissions patterns and demonstrate the low sensitivity of the method to these factors. The method was also tested in a real case and proved to provide sound evaluations of NH3 losses from surface applied and incorporated slurry. We hence showed that this novel method should be robust and suitable for estimating NH3 emissions from agronomic plots. We believe that the method could be further improved by using Bayesian inference and inferring surface concentrations rather than surface fluxes. Validating against controlled source is also a remaining challenge.

Highlights

  • Tropospheric ammonia (NH3) is mainly emitted by agriculture and has great environmental impacts, which are increasingly taken into account in European and international regulations (Council, 1996, 2016; UNECE, 2012)

  • Slurry was applied on 5 April 2011 at a rate of 49 m3 ha−1, which led to 114 kg N ha−1 and 39 kg N-NH4 ha−1

  • 3.2 Example ammonia concentration dynamics modelled with the tuned FIDES model

Read more

Summary

Introduction

Tropospheric ammonia (NH3) is mainly emitted by agriculture and has great environmental impacts (atmospheric pollution, eutrophication, reduction of biodiversity), which are increasingly taken into account in European and international regulations (Council, 1996, 2016; UNECE, 2012). The incorporation was performed in two subplots 1 h after the end of the slurry spreading with a disc harrower at a depth of 0.10 m. Ammonia concentration was measured with diffusive samplers (ALPHA), (Sutton et al, 2001; Tang et al, 2001, 2009), which were placed at the centre of each subplot at two heights (0.32 and 0.87 m from the ground) as well as next to the assay at three locations (5 m away from the plots) at 3 m height. The ALPHA samplers were set in place just after slurry application and incorporation (between 14:20 and 14:50 LT) and left exposed subsequently for 3, 22, 23, 23, 71 h (3 days) and 359 h (15 days), spanning 21 days. Since no background concentrations were measured at a reasonable distance from the field, the background concentration was assumed as the minimum over the whole period of the concentrations measured on the 3 m height masts

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.