Abstract

Abstract Surfactants have been used in the oil industry for decades as multi-functions additive in stimulation fluids. In hydraulic fracturing, surfactants and microemulsions have been extensively reported numerously as flowback additives to lower surface and interfacial tension to aid water recovery. Fracturing fluids invade the matrix during the fracturing, and if not recovered, leads to water blockage and a reduction to relative permeability to gas or oil. This problem is more challenging in low- permeability formations since capillary forces have more profound impact on water retention, and hence water recovery and subsequent oil productivity. In this work, surface tension, interfacial tension, foam stability, sand-packed columns, and coreflood experiments were performed on a selected environmentally friendly water-based surfactant formulation. The performance of the surfactant of interest was compared to two commercial microemulsion and one non-ionic alcohol ethoxylated. The results confirmed the benefit of using surfactants for flowback compared to non-surfactant case. Surface tension (ST) alone cannot be used as a selecting criterion for flow back. The alcohol exthoxylated, while reducing the ST to same level as the two microemulsions, showed very poor performance in packed column and coreflood tests. Although interfacial tension (IFT) seems to be more reasonable criteria, adsorption and emulsion tendency are other challenges that can hinder the performance of good surfactants with low IFT. Based on the data, a surfactant that lowers the IFT with the selected oil to below 1 mN/m is more likely to outperform other surfactants with higher IFT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.