Abstract

The use of extracellular matrix (ECM) molecules from tissues is an interesting way to induce specific responses of cells grown onto composite scaffolds to promote adhesion, proliferation and differentiation. There have been several studies on the effects on cell proliferation and differentiation of osteoprogenitor cells cultured onto composites, either adding some ECM molecules or grown in the presence of growth factors. Other studies involve the use of osteoblasts cultured on a three-dimensional (3D) matrix, enriched with ECM molecules produced by the same cells grown previously inside the composite. Here, the effect of enrichment of a novel multilayered chitosan-hydroxyapatite composite with ECM molecules produced by osteoblasts, or the addition of 25 or 50 µg/ml fibronectin to the composite, on proliferation and differentiation of osteoblasts cultured on these composites was studied. The results showed an increase in the number of osteoblasts from day 1 of culture, which was higher in the group grown onto composites enriched with the highest concentration of fibronectin or with ECM molecules produced naturally by osteoblasts cultured previously on them, when compared with the control group. However, this increment tended to decline in all groups after day 7 of culture, the day when they reached the highest peak of proliferation. Differentiation expressed as alkaline phosphatase activity followed the proliferation pattern of the cells cultivated on the scaffolds. The results demonstrate the potential offered by these enriched 3D multilayered composites for improving their ability as bone grafting material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.