Abstract
It has been proposed in the literature that the Neuber relation be modified to read Kε/Kt×(Kσ/Kt)m=1 in order to improve its predictive capability when plane strain loading conditions exist. Kε, Kσ, and Kt are respectively the strain, stress, and elastic concentration factors. The exponent m is proposed to be 1 for plane stress and 0 for plane strain. This paper reports the results of biaxial notch root strain measurements on three sets of double-notched aluminum specimens that have different thicknesses and root radiuses. Elastoplastic strains are measured over gage lengths as short as 150 micrometers with a laser-based in-plane interferometric technique. The measured strains are used to compute Kε directly and Kσ using the uniaxial stress-strain curve. The exponent m can then be determined for each amount of constraint. The amount of constraint is defined as the negative ratio of lateral to longitudinal strain at the notch root and determined from elastic finite element analyses. As this ratio decreases for the three cases, the values of m are found to be 0.65, 0.48, and 0.36. The modified Neuber relation is an improvement, but discrepancies still exist when plastic yielding begins at the notch root.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.