Abstract

Pulsed photonuclear techniques are commonly used in homeland security and nuclear safeguards applications to achieve enhanced detection sensitivity. For example, photoneutrons generated by a pulse-mode linear accelerator (linac) are commonly utilized to produce characteristic capture gamma rays for the detection of nitrogen-rich explosives. Recently, in an effort to develop innovative systems with increased sensitivity to detect diversion and prevent misuse, the authors proposed to assay used nuclear fuel for its plutonium content using a photofission technique, in support of nuclear material management in the U.S. fuel cycle.Passive spectroscopy measurements in the presence of intense background from fission products could be very difficult. Focusing on high-energy delayed gamma rays emitted by short-lived products from photofission presents a much more promising solution. However, as discovered in this study, a commercially available standard high-purity germanium (HPGe) preamplifier can be easily saturated for tens of milliseconds after each linac pulse. This greatly reduces the live time of the system especially when the linac repetition rate is high. On the other hand, although significantly reduced by increasing the lower-level threshold, the input count rate can still easily reach 106 cps (counts per second). Developing a gamma spectroscopy system that can handle such a high count rate has been a major challenge.In this work, a commercial HPGe preamplifier was modified to reduce the saturation time and tail time to improve its high-rate performance in a pulsed photonuclear environment. Results of the modifications were evaluated via both simulations and experiments and proven to be effective without significant degradation of energy resolution. The field-effect transistor (FET) and feedback components were first moved to the warm side to enable the modifications. The saturation time of the preamplifier following a linac pulse was greatly reduced by decreasing the value of the feedback resistor. The effect of reducing the tail time of the output signal was also studied. A traditional trapezoidal shaping approach was then employed to study the impact of the modifications on energy resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.