Abstract

The effects of primary electron-donor and electron-acceptor substrates on the kinetics of TCA biodegradation in sulfate-reducing and methanogenic biofilm reactors are presented. Of the common anaerobic electron-donor substrates that were tested, only formate stimulated the TCA biodegradation rate in both reactors. In the sulfate-reducing reactor, glucose also stimulated the reaction rate. The effects of formate and sulfate on TCA biodegradation kinetics were analyzed using a model for primary substrate effects on reductive dehalogenation. Although some differences between the model and the data are evident, the observed responses of the TCA degradation rate to formate and sulfate were consistent with the model. Formate stimulated the TCA degradation rate in both reactors over the entire range of TCA concentrations that were studied (from 50 μg TCA/L to 100 mg TCA/L). The largest effects occurred at high TCA concentrations, where the dehalogenation kinetics were zero order. Sulfate inhibited the first-order TCA degradation rate in the sulfate-reducing reactor, but not in the methanogenic reactor. Molybdate, which is a selective inhibitor of sulfate reduction, stimulated the TCA removal rate in the sulfate-reducing reactor, but had no effect in the methanogenic reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.