Abstract

AbstractBackgroundThe development of a cost‐effective process of struvite crystallization requires the selection of appropriate sources of alkali and magnesium. In this study, the effectiveness of two industrial grade products, MgO and Mg(OH)2, as magnesium and alkali sources to recover phosphorus as struvite were investigated and compared in a first set of experiments. Subsequently, the use of industrial Mg(OH)2 was compared in two different struvite crystallization systems, an upflow fluidized bed reactor (FBR) and a continuous stirred tank reactor (CSTR) coupled to a settler tank.ResultsAt the same operational conditions, the consumption of MgO was higher than Mg(OH)2 consumption. Moreover, industrial Mg(OH)2 consumption for FBR and the CSTR operation was 1.6 and 1.1 1 mol Mg added mol‐1 P precipitated, respectively. This difference was caused by the high mixing intensity and the higher contact time between the Mg(OH)2 slurry and the influent in the CSTR, favouring the conversion.ConclusionsBoth industrial grade magnesium products are promising options for struvite crystallization. However, Mg(OH)2 was more effective than the starting material, MgO, to recover phosphorus. Struvite crystallization by adding an industrial grade Mg(OH)2 could be economically viable with regard to alternative physico‐chemical P removal processes using metal salts, increasing the attractiveness of this P recovery process. © 2017 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call