Abstract
AbstractLand-atmosphere feedbacks are a critical component of the hydrologic cycle. Vertical profiles of boundary layer temperature and moisture, together with information about the land surface, are used to compute land-atmosphere coupling metrics. Ground based remote sensing platforms, such as the Atmospheric Emitted Radiance Interferometer (AERI), can provide high temporal resolution vertical profiles of temperature and moisture. When co-located with soil moisture, surface flux, and surface meteorological observations, such as at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site, it is possible to observe both the terrestrial and atmospheric legs of land-atmosphere feedbacks. In this study, we compare a commonly used coupling metric computed from radiosonde-based data to that obtained from the AERI to characterize the accuracy and uncertainty in the metric derived from the two distinct platforms. This approach demonstrates the AERI’s utility where radiosonde observations are absent in time and/or space. Radiosonde and AERI based observations of the Convective Triggering Potential and Low-Level Humidity Index (CTP-HIlow) were computed during the 1200 UTC observation time and displayed good agreement during both 2017 and 2019 warm seasons. Radiosonde and AERI derived metrics diagnosed the same atmospheric preconditioning based upon the CTP-HIlow framework a majority of the time. When retrieval uncertainty was considered, even greater agreement was found between radiosonde and AERI derived classification. The AERI’s ability to represent this coupling metric well enabled novel exploration of temporal variability within the overnight period in CTP and HIlow. Observations of CTP-HIlow computed within a few hours of 1200 UTC were essentially equivalent, however with greater differences in time arose greater differences in CTP and HIlow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.