Abstract

The presence of effluent organic matter (EfOM) and organic micro-pollutants (OMPs) in secondary effluent is receiving increasing concern due to their potential impacts on the aquatic environment and human health. In this study, the removal characteristics of EfOM by magnetic ion-exchange resin (MIEX), ozonation, and the hybrid process of MIEX followed by ozonation (M + O) were compared by measuring the bulk organic indicators (BOIs), OMPs, bio-toxicity, and fluorescence. Furthermore, the desorption characteristics of MIEX were comprehensively studied. Ozonation could reduce the OMPs, total fluorescence (TF), genotoxicity, and oestrogenic activity more effectively than MIEX, with reductions of 80.3%, 97.8%, 98.9%, and 94.6%, respectively. The M + O process was capable of removing more EfOM than the individual MIEX or ozonation processes and could reduce the genotoxicity and oestrogenic activity to the detection limit. By implementing MIEX as a pre-treatment, the generation of ammonia–nitrogen and nitrate–nitrogen was effectively reduced in the subsequent ozonation process as MIEX adsorbed organic nitrogen and nitrite-nitrogen. The different regenerants influenced the OMP desorption performance of MIEX by changing the desorption mechanisms, and NaCl + NaOH was the best regenerant due to its high total OMP desorption efficiency. Parallel factor analysis coupled with self-organising maps further explained the differences in fluorescence desorption due to the addition of NaOH to the regenerated solution. Pearson correlation analysis indicated the potential of using spectroscopic indicators, such as ultraviolet absorbance and TF, to assess the evolution of OMPs and bio-toxicity during the M + O and MIEX desorption processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call