Abstract
BackgroundThe objective of this study was to evaluate the mechanical and histological properties of a fully absorbable poly-4-hydroxybutyrate/absorbable barrier composite mesh (Phasix™ ST) compared to partially absorbable (Ventralight™ ST), fully absorbable (Phasix™), and biologically derived (Strattice™) meshes in a porcine model of ventral hernia repair.MethodsBilateral abdominal surgical defects were created in twenty-four Yucatan pigs, repaired with intraperitoneal (Phasix™ ST, Ventralight™ ST) or retromuscular (Phasix™, Strattice™) mesh, and evaluated at 12 and 24 weeks (n = 6 mesh/group/time point).ResultsPrior to implantation, Strattice™ demonstrated significantly higher (p < 0.001) strength (636.6 ± 192.1 N) compared to Ventralight™ ST (324.3 ± 37.1 N), Phasix™ ST (206.9 ± 11.3 N), and Phasix™ (200.6 ± 25.2 N). At 12 and 24 weeks, mesh/repair strength was significantly greater than NAW (p < 0.01 in all cases), and no significant changes in strength were observed for any meshes between 12 and 24 weeks (p > 0.05). Phasix™ mesh/repair strength was significantly greater than Strattice™ (p < 0.001) at 12 and 24 weeks, and Ventralight™ ST mesh/repair strength was significantly greater than Phasix™ ST mesh (p < 0.05) at 24 weeks. At 12 and 24 weeks, Phasix™ ST and Ventralight™ ST were associated with mild inflammation and minimal–mild fibrosis/neovascularization, with no significant differences between groups. At both time points, Phasix™ was associated with minimal–mild inflammation/fibrosis and mild neovascularization. Strattice™ was associated with minimal inflammation/fibrosis, with minimal neovascularization at 12 weeks, which increased to mild by 24 weeks. Strattice™ exhibited significantly less neovascularization than Phasix™ at 12 weeks and significantly greater inflammation at 24 weeks due to remodeling.ConclusionsPhasix™ ST demonstrated mechanical and histological properties comparable to partially absorbable (Ventralight™ ST) and fully resorbable (Phasix™) meshes at 12 and 24 weeks in this model. Data also suggest that fully absorbable meshes with longer-term resorption profiles may provide improved mechanical and histological properties compared to biologically derived scaffolds.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.