Abstract

A method for the detection of Salmonella based on fluorescence in situ hybridization (FISH) has been developed and applied for the direct detection of Salmonella in pure cultures and in formalin-fixed, paraffin-embedded tissue sections. On the basis of the 23S rRNA gene sequences representing all of the S. enterica subspecies and S. bongori, an 18-mer oligonucleotide probe was selected. The specificity of the probe was tested by in situ hybridization to bacterial cell smears of pure cultures. Forty-nine of 55 tested Salmonella serovars belonging to subspecies I, II, IIIb, IV, and VI hybridized with the probe. The probe did not hybridize to serovars from subspecies IIIa (S. arizonae) or to S. bongori. No cross-reaction to 64 other strains of the family Enterobacteriaceae or 18 other bacterial strains outside this family was observed. The probe was tested with sections of formalin-fixed, paraffin-embedded tissue from experimentally infected mice or from animals with a history of clinical salmonellosis. In these tissue sections the probe hybridized specifically to Salmonella serovars, allowing for the detection of single bacterial cells. The development of a fluorescence-labelled specific oligonucleotide probe makes the FISH technique a promising tool for the rapid identification of S. enterica in bacterial smears, as well as for the detection of S. enterica in histological tissue sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.