Abstract

This paper presents a novel asynchronous architecture of Field-programmable gate arrays (FPGAs) to reduce the power consumption. In the dynamic power consumption of the conventional FPGAs, the power consumed by the switch blocks and clock distribution is dominant since FPGAs have complex switch blocks and the large number of registers for high programmability. To reduce the power consumption of switch blocks and clock distribution, asynchronous bit-serial architecture is proposed. To ensure the correct operation independent of data-path lengths, we use the level-encoded dual-rail encoding and propose its area-efficient implementation. The proposed field-programmable VLSI is implemented in a 90nm CMOS technology. The delay and the power consumption of the proposed FPVLSI are respectively 61% and 58% of those of 4-phase dual-rail encoding which is the most common encoding in delay insensitive encoding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.