Abstract

The aim of this study was to (1) evaluate bending structural properties of a machined short fibre epoxy (SFE) feline bone surrogate (FBS), (2) compare the bending behaviour of small angle-stable interlocking nails (I-Loc; Targon) and locking compression plates (LCP) and (3) evaluate the effect of implant removal on FBS bending strength. Part 1: Feline cadaveric femurs (n = 10) and FBS (n = 4) underwent cyclic four-point bending and load to failure. Part 2: Fracture gap FBS constructs (n = 4/group) were stabilized in a bridging fashion with either I-Loc 3 and 4, Targon 2.5 and 3.0, LCP 2.0 and 2.4, then cyclically bent. Part 3: Intact FBS with pilot holes, simulating explantation, (n = 4/group) underwent destructive bending tests. Bending compliance, angular deformation and failure moment (FM) were statistically compared (p < 0.05). Native bone and FBS were similar for all outcome measures (p > 0.05). The smallest and largest bending compliance and angular deformation were seen in the I-Loc 4 and LCP 2.0 respectively (p < 0.05). While explanted Targon FBS had the lowest FM (p < 0.05), I-Loc and LCP constructs FM were not different (p > 0.05). The similar bending properties of short fibre epoxy made FBS and native feline femurs suggest that this model could be used for mechanical testing of implants designed for feline long bone osteosynthesis. The I-Loc constructs smaller angular deformation which also suggests that these implants represent a valid alternative to size-matched Targon and LCP for feline fracture osteosynthesis. The significantly lower FM of explanted Targon may increase the risk of secondary fracture following implant removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.