Abstract

A technique is presented for rapid detection of submersed aquatic vegetation (SAV) using a high-frequency, high-resolution digital echo sounder linked with global positioning system equipment. The acoustic reflectivity of SAV allows for detection and explicit meaqsurement of canopy geometry using a digital signal processing algorithm described here. Comparing output data from this system with physical measurements shows good detection and measurement performance over a wide range of conditions for freshwater tape grass (Vallisneria americana) and seagrasses (Thalassia testudinum, Halodule wrightii, andSyringodium filiforme) in a sandy-bottom, south Florida estuary. The range of environmental conditions for which the system can be used is defined. Based on these measured performance data and a review of existing literature, this system appears to fill a gap in the inventory of established methods for measuring the distribution and abundance of submersed macrophytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call