Abstract

AbstractRapid advancement and widespread digital camera applications have made it possible to replace charge‐coupled device (CCD) cameras in automatic inspections for industrial applications. However, most digital camera applications using the automatic exposure mode may not be effective in some of the inspection environments. The reflection from a board surface in printed circuit board (PCB) inspections is one such problem area. The objective of this study is to develop a methodology to evaluate the effectiveness of using digital cameras for inspection. The indices used for evaluating digital camera image quality are the perceived image quality, the visual resolution, and the noise. An experiment was designed and conducted to determine the optimal camera parameter combination for attaining the best image quality. The desirability function was used to compare various digital camera parameter settings in considering three image quality indices for selecting the best camera‐operating conditions. Based on the developed model and the subjective image quality index, the overall image quality improved 9.4% and 13.86%, respectively. The developed methodology can be used to: (a) determine the digital camera image quality, (b) provide an improved model for determining the automatic exposure setting for digital camera designers, and (c) adjust the digital camera parameters for automatic inspection. © 2008 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.