Abstract

This study aimed to evaluate a deep learning (DL) system using convolutional neural networks (CNNs) for automatic detection of caries on bitewing radiographs. In total, 2468 bitewings were labeled by 3 dentists to create the reference standard. Of these images, 1257 had caries and 1211 were sound. The Faster region-based CNN was applied to detect the regions of interest (ROIs) with potential lesions. A total of 13,246 ROIs were generated from all 'sound' images, and 50% of 'caries' images (selected randomly) were used to train the ROI detection module. The remaining 50% of 'caries' images were used to validate the ROI detection module. Caries detection was then performed using Inception-ResNet-v2. A set of 3297 'caries' and 5321 'sound' ROIs cropped from the 2468 images was used to train and validate the caries detection module. Data sets were randomly divided into training (90%) and validation (10%) data sets. Recall, precision, specificity, accuracy, and F1 score were used as metrics to assess performance. The caries detection module achieved recall, precision, specificity, accuracy, and F1 scores of 0.89, 0.86, 0.86, 0.87, and 0.87, respectively. The proposed DL system demonstrated promising performance for detecting proximal surface caries on bitewings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.