Abstract

Copper metallization was applied to quarter-micron CMOS circuits using copper chemical vapor deposition (CVD) and chemical mechanical polishing (CMP). Both the metallization process and the electrical characteristics of CMOS devices/circuits were evaluated. Process-induced metal contamination on both sides of the wafer were quantitatively evaluated and reduced to about of 10/sup 11/ atoms/cm/sup 2/ by using an optimized cleaning sequence. The ability of borophosphosilicate-glass (BPSG) to act as a copper diffusion barrier was discovered and the ability of TiN to do so was also confirmed. Electrical characteristics of n and p MOSFET's with copper interconnections were stable even after annealing at 550/spl deg/C. The leakage current of the pn junction, capacitance-voltage characteristics and time-dependent dielectric breakdown characteristics of the MOS diode indicate that the copper metallization process did not deteriorate the pn junction and the gate oxide. Normal operation of a 53-stage quarter-micron CMOS inverter ring oscillator with copper metallization was successfully achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.