Abstract

The study focused on a recently launched conventional glass ionomer cement (GIC) with a particular chemical formulation of both, filler and acrylic liquid, by analysing its mechanical behaviour in comparison to three conventional GICs. Furthermore, the effect of resin coating and storage conditions was evaluated. Three commercially available GICs were chosen: Riva Self Cure (SDI), Fuji IX Fast (GC) and Fuji IX GP Extra/Equia (GC). Additionally a newly developed zinc-containing GIC--ChemFil Rock (Dentsply)--was tested. Mechanical properties were determined at macro- [flexural strength (FS) and modulus of elasticity (E (flexural))] and micro-scale [Vickers hardness (VH) and indentation modulus (E)] after storing coated and uncoated specimens in artificial saliva and distilled water for 7 and 30 days. ChemFil Rock revealed the highest FS, but the lowest VH and E. The micro-mechanical properties of the analysed GICs did neither benefit from the new zinc formulation nor from resin coating. A resin coating is nevertheless a valuable support for GIC fillings, since it offers the absence of visible surface defects like crazing and voids, and thus, it led to significant improvements in flexural strength. This statement is also valid for ChemFil Rock, contrary to manufacture recommendation. The impact of storage agent and storage duration on the measured properties was low. The new development (ChemFil Rock) might represent a promising approach regarding longevity of GIC fillings in molar regions, due to the high flexural strength and the absence of visible surface defects like crazing and voids. All GICs should receive surface protection in order to perform their maximum in stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.