Abstract

The performance of a coherent 2-µm differential absorption lidar (DIAL) for simultaneously measuring water vapor (H2O) and radial wind velocity was evaluated. For measuring H2O, a wavelength locking technique was applied to the H2O-DIAL system. The H2O-DIAL system was evaluated under summer daytime conditions in Tokyo, Japan. H2O-DIAL measurements were compared with measurements from radiosondes. The H2O-DIAL-derived volumetric humidity values agreed with the radiosonde-derived values over the range from 11 to 20 g/m3 with a correlation coefficient of 0.81 and a root-mean-square difference of 1.46 g/m3. Comparisons between the H2O-DIAL and the in-situ surface meteorological sensors demonstrated the simultaneous measurement of H2O and radial wind velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.