Abstract

The role of intracranial hemodynamics in the pathophysiology and risk stratification of brain AVMs remains poorly understood. The purpose of this study was to assess the influence of Spetzler-Martin grade, clinical history, and risk factors on vascular flow and tissue perfusion in cerebral AVMs. 4D flow and perfusion MR imaging was performed in 17 patients with AVMs. Peak velocity and blood flow were quantified in AVM feeding and contralateral arteries, draining veins, and the straight sinus. Regional perfusion ratios (CBF, CBV, and MTT) were calculated between affected and nonaffected hemispheres. Regarding flow parameters, high-grade AVMs (Spetzler-Martin grade of >2) demonstrated significantly increased peak velocity and blood flow in the major feeding arteries (P < .001 and P = .004) and straight sinus (P = .003 and P = .012) and increased venous draining flow (P = .001). The Spetzler-Martin grade significantly correlated with cumulative feeding artery flow (r = 0.85, P < .001) and draining vein flow (r = 0.80, P < .001). Regarding perfusion parameters, perinidal CBF and CBV ratios were significantly lower (P < .001) compared with the remote ratios and correlated negatively with cumulative feeding artery flow (r = -0.60, P = .014 and r = -0.55, P = .026) and draining vein flow (r = -0.60, P = .013 and r = -0.56, P = .025). Multiple regression analysis revealed no significant association of AVM flow or perfusion parameters with clinical presentation (rupture and seizure history) and AVM risk factors. Macrovascular flow was significantly associated with increasing Spetzler-Martin grade and correlated with perinidal microvascular perfusion in cerebral AVMs. Future longitudinal studies are needed to evaluate the potential of comprehensive cerebral flow and perfusion MR imaging for AVM risk stratification.

Highlights

  • BACKGROUND AND PURPOSEThe role of intracranial hemodynamics in the pathophysiology and risk stratification of brain AVMs remains poorly understood

  • Macrovascular flow was significantly associated with increasing Spetzler-Martin grade and correlated with perinidal microvascular perfusion in cerebral AVMs

  • Future longitudinal studies are needed to evaluate the potential of comprehensive cerebral flow and perfusion MR imaging for AVM risk stratification

Read more

Summary

Objectives

The purpose of this study was to assess the influence of Spetzler-Martin grade, clinical history, and risk factors on vascular flow and tissue perfusion in cerebral AVMs. The purpose of this study was to quantitatively evaluate macrovascular flow in AVM arterial and venous networks and microvascular perfusion of the peripheral cerebral parenchyma

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call