Abstract

Two-photon-induced photopolymerization (2PP) has gained increased interest due to the capability of manufacturing three-dimensional structures with very high feature resolution. To assess the suitability of photopolymer systems for 2PP, methods have to be developed that allow a screening of the efficiency of monomer-initiator combinations in the context of high throughput, large processing window and geometric quality of the final parts. In this paper, a method for evaluating 2PP structures is described. For this purpose, the double-bond conversion of fabricated 2PP structures was measured giving quantifiable results about the efficiency of the photoinitiator. The method is based on local measurement of the double-bond conversion of the photopolymer using a microscope in combination with infrared spectroscopy. The obtained double-bond conversion is a measure for the efficiency of the photopolymer system (initiator in combination with monomer), and thus allows to compare different photopolymers in a quantitative way. Beside this evaluation of 2PP structures, fabrication of complex 3D structures was done to determine the limits of the 2PP technology for miscellaneous components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call