Abstract
In order to satisfy the requirements of high quality and optimal material manufacturing process, it is important to control the environment of the manufacturing process. Depending on these processes, it is possible to improve the quality of the product by adjusting various gases. With the advent of the tunable laser absorption spectroscopy (TDLAS) technique, the temperature and concentration of the gases can be measured simultaneously. Among them, computed tomography-tunable diode laser absorption spectroscopy (CT-TDLAS) is the most important technique for measuring the distributions of temperature and concentration across the two-dimensional planes. This study suggests a three-dimensional measurement to consider the irregular flow of supplying gases. The simultaneous multiplicative algebraic reconstruction technique (SMART) algorithm was used among the CT algorithms. Phantom datasets have been generated by using Gaussian distribution method. It can show expected temperature and concentration distributions. The (HITRAN) database in which the thermo-dynamical properties and the light spectra of H2O are listed were used for the numerical test. The relative average temperature error ratio in the results obtained by the SMART algorithm was about 3.2% for temperature. The maximum error was 86.8 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.