Abstract

The thymidine analog 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) has been developed as a positron emission tomography (PET) tracer to assess the proliferation activity of tumors in vivo. The present study investigated the relationship between the kinetic parameters of (18)F-FLT in vivo and thymidine kinase-1 (TK-1) expression and cell proliferation rate in vitro, and blood-brain barrier (BBB) breakdown in human brain gliomas. A total of 21 patients with newly diagnosed gliomas were examined by (18)F-FLT PET kinetic analysis. Maximum standardized uptake value (SUVmax) and tumor-to-normal (T/N) ratio of (18)F-FLT in the tumor and (18)F-FLT kinetic parameters in the corresponding contralateral region were determined. The expression levels of TK-1 protein and mRNA were determined by immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR), respectively, using surgical specimens. The cell proliferation rate of the tumor was determined in terms of the Ki-67 labeling index. BBB breakdown was evaluated on MR images with contrast enhancement. (18)F-FLT SUVmax and T/N ratio were significantly correlated with the influx rate constant (K (1); P = 0.001 and P < 0.001, respectively), but not with the phosphorylation rate constant (k (3)). IHC and real-time PCR studies demonstrated a significant correlation between K (1) and TK-1 mRNA expression (P = 0.001), but not between k (3) and TK-1 protein and mRNA expression. Linear regression analysis revealed a significant correlation between K (1) and the Ki-67 index (P = 0.003), but not between k (3) and the Ki-67 index. TK-1 mRNA expression was significantly correlated with the Ki-67 index (P = 0.009). (18)F-FLT SUVmax and T/N ratio were significantly correlated with BBB breakdown evaluated by contrast enhancement in MR images (P = 0.003 and P = 0.011, respectively). These results indicate that (18)F-FLT uptake in the tumor is significantly related to transport through the disrupted BBB, but not through phosphorylation activity. Although the tissue TK-1 expression reflects tumor proliferation activity, the phosphorylation rate constant k (3) determined by (18)F-FLT PET kinetic analysis does not accurately reflect TK-1 expression in the tissue and should not be used as a surrogate biomarker of cell proliferation activity in human brain gliomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call