Abstract
The BACE inhibitor verubecestat was previously found to reduce amyloid load as assessed by 18F-flutemetamol positron emission tomography (PET) composite cortical standard uptake value ratio (SUVr) in patients with mild-to-moderate Alzheimer's disease (AD) in a substudy of the EPOCH trial. Here, we report on additional analyses relevant to the EPOCH PET data, to help inform on the use of PET for assessing amlyloid load in AD clinical trials. The analyses addressed (1) identification of an optimal 18F-flutemetamol reference region, (2) determination of the threshold to characterize the magnitude of the longitudinal change, and (3) the impact of partial volume correction (PVC). Pons and subcortical white matter were evaluated as reference regions. The SUVr cutoffs and final reference region choice were determined using 162 18F-flutemetamol PET scans from the AIBL dataset. 18F-flutemetamol SUVrs were computed at baseline and at Week 78 in EPOCH participants who received verubecestat 12mg (n = 14), 40mg (n = 20), or placebo (n = 20). Drug effects on amyloid load were computed using either Meltzer (MZ), or symmetric geometric transfer matrix (SGTM) PVC and compared to uncorrected data. The optimal subcortical white matter and pons SUVr cutoffs were determined to be 0.69 and 0.62, respectively. The effect size to detect longitudinal change was higher for subcortical white matter (1.20) than pons (0.45). Hence, subcortical white matter was used as the reference region for the EPOCH PET substudy. In EPOCH, uncorrected baseline SUVr values correlated strongly with MZ PVC (r2 = 0.94) and SGTM PVC (r2 = 0.92) baseline SUVr values, and PVC did not provide improvement for evaluating treatment effects on amyloid load at Week 78. No change from baseline was observed in the placebo group at Week 78, whereas a 0.02 and a 0.04 decrease in SUVr were observed in the 12mg and 40mg arms, with the latter representing a 22% reduction in the amyloid load above the detection threshold. Treatment-related 18F-flutemetamol longitudinal changes in AD clinical trials can be quantified using a subcortical white matter reference region without PVC. clinicaltrials.gov NCT01739348.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.