Abstract

Compound-specific isotope analyses of geoporphyrins, which are derivatives of chloropigments possessed by phototrophs, provide essential records of the biogeochemical cycle of past aquatic environments. Here, we evaluated uncertainties in carbon and nitrogen isotopic compositions (δ13C and δ15N) associated with high-performance liquid chromatography (HPLC) purification and isotopic measurements of geoporphyrins. Evaluation of total blank carbon and nitrogen for the HPLC and our sensitivity-improved elemental analyzer/isotope ratio mass spectrometer (nano-EA/IRMS) analysis confirmed that blank carbon can be corrected and that blank nitrogen is negligible compared to the mass of geoporphyrins required for the isotopic measurement. While geoporphyrins exhibited substantial in-peak carbon and nitrogen isotopic fractionations, no systematic changes in δ13C and δ15N values were observed during reversed- and normal-phase HPLC isolation of Ni- and VO-porphyrin standards, with the changes in δ13C and δ15N values being within ±0.6‰ and ±1.2‰ (2σ), respectively. These values are comparable to the instrumental precision of the nano-EA/IRMS system (±1.3‰ for 0.70 μgC and ±1.1‰ for 0.08 μgN, 2σ), confirming that no substantial artifact in the δ13C and δ15N values would be expected during the reversed- and normal-phase HPLC purification. The sensitivity and precision of our method enable us to determine δ13C and δ15N values of both major and minor geoporphyrins found in ancient sediments, which would provide detailed information on the photosynthetic primary producers and the carbon and nitrogen cycles in the past.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.