Abstract

The response of an equivalent 26m-thick deposit of dry, medium-dense, Nevada Sand with a relative density of 60% is measured in the centrifuge under six 1-D, horizontal earthquake motions applied to the base of the centrifuge container. Several 1-D site response analysis techniques are employed to simulate the experiments, including (a) equivalent linear analyses, (b) nonlinear analyses using a multi-degree-of-freedom, lumped mass model, and (c) finite element analyses of a soil column using a pressure-dependent, multi-yield, plasticity soil model. An average Vs profile was estimated using empirical correlations. Soil dynamic properties included published generic modulus reduction and damping curves with implied strength correction as well as recommended plasticity model parameters based on soil index properties. Computed and measured lateral displacements, accelerations, shear strains, spectral accelerations, and Arias Intensities are presented and their differences are quantified in terms of mean residuals and variance. The comparisons demonstrate that 1-D seismic site response analyses using the available strength corrected, generic, pressure-dependent modulus reduction and damping curves for medium-dense dry sand can reliably compute soil response under 1-D wave propagation using any of the three methods, with an absolute mean residual of less than 0.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.