Abstract

BackgroundProtective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children.MethodologyHere we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide–core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli.Principal FindingsWe detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model.ConclusionWe describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens.

Highlights

  • Cholera is a severe dehydrating diarrheal illness of humans caused by organisms Vibrio cholerae O1 or O139 serogroup organisms

  • We describe a protectively immunogenic cholera conjugate in mice

  • Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens

Read more

Summary

Introduction

Cholera is a severe dehydrating diarrheal illness of humans caused by organisms Vibrio cholerae O1 or O139 serogroup organisms. V. cholerae O1 can be distinguished genotypically and phenotypically into classical and El Tor biotypes [2] and Ogawa and Inaba serotypes. Ogawa differs from Inaba only by the presence of a 2-O-methyl group in the non-reducing terminal sugar of O-specific polysaccharide (OSP) [3,4,5]. The global cholera pandemic is caused by organisms V. cholerae O1, El Tor, organisms, with the prevalent serotype fluctuating during cholera outbreaks, switching between Ogawa and Inaba [1]. Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call