Abstract
In this paper, we use Soergel calculus to define a monoidal functor, called the evaluation functor, from extended affine type A Soergel bimodules to the homotopy category of bounded complexes in finite type A Soergel bimodules. This functor categorifies the well-known evaluation homomorphism from the extended affine type A Hecke algebra to the finite type A Hecke algebra. Through it, one can pull back the triangulated birepresentation induced by any finitary birepresentation of finite type A Soergel bimodules to obtain a triangulated birepresentation of extended affine type A Soergel bimodules. We show that if the initial finitary birepresentation in finite type A is a cell birepresentation, the evaluation birepresentation in extended affine type A has a finitary cover, which we illustrate by working out the case of cell birepresentations with subregular apex in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.