Abstract

In terms of dynamic flowmeter calibration, countable response of calibrated meters is one of the key parameters, excluding the calibration system. In practice, it is difficult to obtain flow rate excitation and dynamic characteristic parameters in flowmeter calibration. In order to evaluate dynamic characteristic of a calibrated turbine flowmeter quantitatively, an evaluation approach is proposed by integrated simulation of a novel calibration system. A nozzle-flapper valve is actuated to generate a short rise-time flow rate change in the calibration piping system, and the time difference between actual upstream flow rate and its reading on the calibrated meter indicates its dynamic characteristic. Numerical simulation is carried out for the upstream flow rate of the meter and then input to transfer function of the meter. Output of the function gives the dynamic characteristic independent of the excitation system. Instead of involving difficult numerical simulation for the turbine flowmeter, this approach allows the isolated meter factor of 0.253 ml to be obtained more simply. The work in this paper primarily aims to meet the criteria of more efficient and accurate evaluation of dynamic characteristic for turbine flowmeters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.