Abstract

This study attempted to determine the effects of heavy metals on the photosynthetic blue-green algae for their potential to use as a biosensor. The bioaccumulation of metals and its effects on pigments of Nostoc muscorum and Synechococcus PCC 7942 were assessed. The culture was grown in BG 11 liquid medium supplied with different metals like mercury (Hg), lead (Pb), and cadmium (Cd) and incubated (µM 20 concentrations) for 10 days under optimal conditions. The accumulated amounts of metals were determined by atomic absorption spectroscopy (AAS). The stress effects on photosynthetic pigment chlorophyll a (Chl a) were monitored by laser-induced fluorescence (LIF). Bio-concentration factor (BCF) reached a peak in cells on the 2nd day of incubation followed by a gradual reduction. The highest reduction in the pigment concentrations (Chl a and β carotene) was observed at 20 µM L−1 Hg treatment. The results indicate that, cyanobacteria may serve as both potential species to be used as a biosensor and used to clean up heavy metals from contaminated water. These changes were analyzed with the long-term goal of exploiting cyanobacterial cells as biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call