Abstract
Mass customization has been identified as a competitive strategy by an increasing number of companies. Family-based product design is an efficient and effective means to realize sufficient product variety, while satisfying a range of customer demands in support for mass customization. This paper presents a knowledge decision support approach to product family design evaluation and selection for mass customization process. Here, product family design is viewed as a selection problem with the following stages: product family (design alternatives) generation, product family design evaluation, and selection for customization. The fundamental issues underlying product family design for mass customization are discussed. Then, a knowledge support framework and its relevant technologies are developed for module-based product family design for mass customization. A systematic fuzzy clustering and ranking model is proposed and discussed in detail. This model supports the imprecision inherent in decision making with fuzzy customers' preference relations and uses fuzzy analysis techniques for evaluation and selection. A neural network technique is also adopted to adjust the membership function to enhance the model. The focus of this paper is on the development of a knowledge-intensive support scheme and a comprehensive systematic fuzzy clustering and ranking methodology for product family design evaluation and selection. A case study and the scenario of knowledge support for power supply family evaluation, selection, and customization are provided for illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Artificial Intelligence for Engineering Design, Analysis and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.