Abstract

<p>The correct spatio-temporal representation of wind speed is of large interest for the wind energy sector. Therefore, this study compares wind measurements in different heights from several locations in Central Europe with two global (ERA5, MERRA-2) and one regional reanalysis (COSMO-REA6). Employing a two-parameter Weibull distribution, the shape and scale parameters as well as mean, standard deviation and RMSE are investigated at and around common wind turbine hub height. We find that COSMO-REA6 best describes wind fields closer to the surface possibly due to its high horizontal resolution. Here, it also exhibits a good alignment with the diurnal cycle. However, for common wind turbine hub heights and above, ERA5 outperforms the other two reanalyses possibly due to its higher vertical resolution. MERRA-2 overestimates wind speed in the lower boundary layer at nearly all sites.</p><p>In the next step, a diagnostic and mass-consistent wind model is applied to the COSMO-REA6 wind field. The resolution of the wind field will be increased by a factor of 8 from originally 6 km to approximately 800 m. In addition to the vertical stability of the lower atmosphere, the orography on the finer grid and the corresponding effects are taken into account. We expect that especially in complex terrain the wind field will be corrected and thus should fit better to the observations. Channeling effects, shadowing and increased wind speed in exposed locations can be better represented. The new high-resolution wind field forms the basis for a statistical wind model to obtain post-processed wind estimates in the lower boundary layer. This approach will utilize generalized linear model and/or an artificial neural network techniques.</p>

Highlights

  • OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications

  • OSA3.5: MEDiterranean Services Chain based On climate PrEdictions (MEDSCOPE)

  • UP2.1 : Cities and urban areas in the earth- OSA3.1: Climate monitoring: data rescue, atmosphere system management, quality and homogenization 14:00-15:30

Read more

Summary

Introduction

OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications. EMS Annual Meeting Virtual | 3 - 10 September 2021 Strategic Lecture on Europe and droughts: Hydrometeorological processes, forecasting and preparedness Serving society – furthering science – developing applications: Meet our awardees ES2.1 - continued until 11:45 from 11:45: ES2.3: Communication of science ES2.2: Dealing with Uncertainties

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.