Abstract

Many of the graphene-based structures exhibit an adsorption capacity due to their high specific surface area (SSA) and micropore volume. This capacity makes them competent materials for applications in energy and environmental sectors where efficiency is highly dependent on these properties for applications, such as water decontamination, solar cells or energy storage. The aim of this work is to study graphene-related materials (GRM) for applications where a high SSA is a requirement, considering the ideal SSA of graphene ≅ 2600 m2g−1. For the synthesis of most of the GRMs, some oxidation method such as the Tour method is used to oxidize graphite to graphite oxide (GrO) as an initial step. Our work studies the optimization of this initial step to evaluate the best conditions to obtain GrO with the maximum possible SSA. The different parameters influencing the process have been evaluated and optimized by applying an experimental design (ED). The resulting materials have been characterized by Brunauer–Emmett–Teller (BET), elemental analysis (EA), X-ray diffraction (XRD) and Raman and scanning electron microscopy (SEM). The evaluation of the results shows a maximum SSA of GrO of 67.04 m2g−1 for a temperature of 60 °C, a time of 12 h, a H2O2 volume of 50 mL and 4 g of KMnO4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.