Abstract

The removal of tetracycline antibiotics using adsorbents is becoming an environmentally friendly and cost-effective method. This study systematically analyzed the stability, structure, morphology, and chemical properties of various adsorbents. Batch adsorption experiments (pH, time, temperature, tetracycline concentration, and adsorbent dosage) were conducted to compare the adsorption capacity of the six adsorbents (biochar, activated carbon, montmorillonite, zeolite, chitosan, and polymerized aluminum chloride) for tetracycline removal. The results indicated that montmorillonite had the highest adsorption efficiency, followed by biochar, with chitosan showing the lowest efficiency. At an adsorbent dose of 25 g/L and an initial tetracycline concentration of 120 mg/L, the removal rates of tetracycline by montmorillonite, biochar, and chitosan were 97.6%, 69.3%, and 12.2%, respectively. Furthermore, the removal rate of tetracycline by biochar, following the response surface methodology optimal mode, increased by 5.5%. The Elovich model was better suited to explain the adsorption process of tetracycline compared to the conventional pseudo-first kinetic model and second-order kinetic model. The isothermal adsorption model suggested that both chemisorption and physisorption occurred in all removal processes, in which chemisorption dominated. Tetracycline was efficiently adsorbed through the combined effects of pore filling, electrostatic attraction, π-π interactions, and complexation reactions of surface functional groups. Additionally, montmorillonite demonstrated superior performance as an adsorbent for tetracycline removal from swine wastewater compared to the other adsorbents studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.