Abstract

Abstract3D printing technology is also known as additive manufacturing technology where the products are manufactured layer by layer. In recent years, huge research is taking place in this field to increase the strength of products by varying the printing process parameters with respect to different materials for various applications. In this research, efforts have been made to decrease the surface roughness for PETG-printed specimen using fused deposition modeling (FDM) process through Taguchi method. The process parameter chosen for the current research is raster angle (RA), infill density (ID), and layer thickness (LT) by keeping other process parameter constant. For the surface texture (roughness) of FDM-printed specimens, three level of values is considered for each process parameter, and correlations between these process parameters were examined which is not found in the literature for PETG specimens. Using design of experiment (DOE) via L27 orthogonal array study has been started. The obtained experimental data were analyzed to examine the impact of each process parameter on the top surface roughness. To assess if process variables have any significant features, the analysis of variance (ANOVA) is performed. The layer thickness has greater than 73% influence on surface roughness, followed by infill density and raster angle, according to the ANOVA results. The results from investigation of Taguchi methods showed that from the selected process parameter 0.1-mm layer thickness, 90% infill density and 60° raster angle are found to be the optimum for better surface finish at 245 °C and at 45 mm/s print speed. The research is focused on a simple yet effective method for estimating surface roughness over various surfaces of FDM specimens using PETG material..KeywordsFused deposition modelingRaster angleInfill densityLayer thickness PETGANOVA

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call