Abstract
The heterogeneity and complexity of glycosylation hinder the depth of site-specific glycoproteomics analysis. High-field asymmetric-waveform ion-mobility spectrometry (FAIMS) has been shown to improve the scope of bottom-up proteomics. The benefits of FAIMS for quantitative N-glycoproteomics have not been investigated yet. In this work, we optimized FAIMS settings for N-glycopeptide identification, with or without the tandem mass tag (TMT) label. The optimized FAIMS approach significantly increased the identification of site-specific N-glycopeptides derived from the purified immunoglobulin M (IgM) protein or human lymphoma cells. We explored in detail the changes in FAIMS mobility caused by N-glycopeptides with different characteristics, including TMT labeling, charge state, glycan type, peptide sequence, glycan size, and precursor m/z. Importantly, FAIMS also improved multiplexed N-glycopeptide quantification, both with the standard MS2 acquisition method and with our recently developed Glyco-SPS-MS3 method. The combination of FAIMS and Glyco-SPS-MS3 methods provided the highest quantitative accuracy and precision. Our results demonstrate the advantages of FAIMS for improved mass spectrometry-based qualitative and quantitative N-glycoproteomics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.