Abstract
Abstract In this study, a novel system comprising of a two-stage organic Rankine cycle, driven by geothermal energy and coupled with a proton exchange membrane electrolyser, is investigated and optimized from thermodynamic and exergoeconomic viewpoints. Various working fluids are considered so as to ascertain the effects of thermophysical properties on the performance of the system. The electricity output from the two-stage organic Rankine cycle is employed to produce hydrogen through electrochemical reactions in the proton exchange membrane electrolyser. The effects are assessed on key parameters of variations in geothermal water temperature and the pressure ratio of high-pressure organic Rankine cycle turbine. Considering three distinct cases, a thorough optimization is performed utilizing a genetic algorithm. It is concluded that a 2-3 percent-point improvement in energy efficiency, as well as a 35% to 41% increase in hydrogen production and a 9.5% to 12% reduction in cost per unit exergy of hydrogen can be achieved via optimization. R123 is shown in the optimization to perform the best among the considered working fluids, with isopentane performing second best.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.