Abstract
AbstractA merger‐formation bow echo (MFBE) in southeast China during the pre‐summer rainy season (PSRS) was simulated using three microphysics schemes including Thompson (THOM), Morrison (MORR), and Weather Research and Forecasting Double‐Moment 6‐Class (WDM6) schemes to compare against polarimetric observations and Variational Doppler Radar Analysis System (VDRAS) analyses. The three schemes captured the basic kinematic structures for this MFBE event after assimilating radar radial velocities, but all underpredicted the cold pool strength by ∼25%. Particularly, THOM produced the best raindrop size distributions (DSDs) and precipitation pattern compared with observed retrievals; further analyses indicated the larger raindrop size bias and the weak cold pool strength in THOM were owing to the relatively low rain breakup efficiency and inefficient rain evaporation, respectively. By decreasing the cutoff diameter of rain breakup parameterization from the default 1.6–1.2 mm (i.e., increasing breakup efficiency) and increasing evaporation efficiency by threefold in THOM, the simulated DSDs and precipitation were greatly improved, and the cold pool strength was significantly increased from 77% to 99% compared to that in VDRAS analyses. This study illustrated a plausible approach of combining polarimetric radar retrievals and VDRAS analyses as bases to adjust THOM default settings in simulating a MFBE event in southeast China with physical characteristics more consistent with observations. Since microphysical processes vary from convective organizations and climate regions, it is recognized more cases studies are needed in the future to examine the validity and approach in this study to improve simulations and predictions of MFBEs in southeast China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.