Abstract

Changing a logic switch threshold in the linear fit sulfur dioxide (LFSO2) algorithm improves the performance based on the evaluation of the NOAA operational atmospheric SO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> near-real-time (NRT) retrieval. The LFSO2 is used to create estimates from measurements made by the Suomi NPP (S-NPP) Ozone Mapping and Profiler Suite (OMPS). We evaluate the LFSO2 and compare the results to those from a principal component analysis (PCA) offline algorithm. Twenty independent volcanic scenarios and one environmental disaster scenario spread over eight years are selected for this comparison. More than three months of Kilauea volcanic activity in 2018 are monitored and are included in this evaluation and comparison. We found that the operational LFSO2 retrievals at lower troposphere (TRL), mid-troposphere (TRM), and lower stratosphere (STL) exhibited a discontinuity and have a saturation-like relationship if compared with PCA results. Using the new retrieval logic, the discontinuity in LFSO2 retrievals and the saturation appearance in comparisons vanished and a close to a linear relationship with the matchup data from the PCA retrieval products is demonstrated. The minimum detectable values for all three SO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> layer products and the planetary boundary layer (PBL) products are estimated with the updated LFSO2 algorithm. Results for a volcanic cloud over Colombia for the updated LFSO2 for OMPS and a Differential Optical Absorption Spectroscopy (DOAS) algorithm for the Tropospheric Monitoring Instrument (TROPOMI) measurements are also examined. Similar SO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> total mass estimates over the region are obtained from the two products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.