Abstract
In order to improve the accuracy and reliability of an existing rutting performance prediction model, based on the long-term observation data of the RIOHTrack’s full-scale pavement structure, the rutting performance prediction model in China’s Specifications for Design of Highway Asphalt Pavement was evaluated, and the model correction method was proposed, which improves the model’s reliability and makes it more suitable for rutting estimation in the region. The research found that the rutting model in China’s Specifications for Design of Highway Asphalt Pavement has significant structural dependence. The model with the highest prediction accuracy and the smallest error is the semi-rigid base asphalt pavement structure with an asphalt concrete layer thickness of 12 cm; the prediction accuracy of other structures is not high. In order to improve the accuracy and reliability of the rutting prediction model, a new model is established by introducing local correction coefficients into the existing model. After local correction, the accuracy of the rutting prediction models for all structures has been greatly improved, and the determination coefficient R2 is greater than 0.87. Since the basic data has already reflected the characteristics of different pavement structures and materials, as well as the impact of local climate environment and traffic load conditions, the new model is more suitable for rutting prediction of various pavement structures in the region where the RIOHTrack is located.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.