Abstract
Evaluation and control of amorphous phases in materials are very important for optimizing their properties. Herein, we focus on polycrystalline MgB2 materials prepared with hydrocarbon doping and study the effects of residual amorphous impurities on the superconducting performance. Carbon is known to be an effective element for enhancing the transport critical current under an external magnetic field. The doped samples were prepared under two different nominal conditions, MgB2(C16H10)x/16 and MgB2−x(C16H10)x/16, which respectively correspond to additional and substitutional type doping of the MgB2 composition. Regardless of the doping type, both fabrication methods retarded the formation of the MgB2 phase due to the dopant, leading to an increase in amorphous impurities. However, the apparent phenomena that arise from the additional and substitutional types are still elusive. Ultimately, the structural differences due to the impurity effects caused significant changes in the transport critical current performance. The present quantitative analysis of the amorphous impurities thus paves the way to further optimize the doping methodology for MgB2 superconducting materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.