Abstract
The atmosphere over the ocean is an important research field that involves multiple aspects such as climate change, atmospheric pollution, weather forecasting, and marine ecosystems. It is of great significance for global sustainable development. Satellites provide a wide range of measurements of marine aerosol optical properties and are very important to the study of aerosol characteristics over the ocean. In this study, aerosol optical depth (AOD) data from seventeen AERONET (Aerosol Robotic Network) stations were used as benchmark data to comprehensively evaluate the data accuracy of six aerosol optical thickness products from 2013 to 2020, including MODIS (Moderate-resolution Imaging Spectrometer), VIIRS (Visible Infrared Imaging Radiometer Suite), MISR (Multi-Angle Imaging Spectrometer), OMAERO (OMI/Aura Multi-wavelength algorithm), OMAERUV (OMI/Aura Near UV algorithm), and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) in the East Asian Ocean. In the East Asia Sea, VIIRS AOD products generally have a higher correlation coefficient (R), expected error within ratio (EE within), lower root mean square error (RMSE), and median bias (MB) than MODIS AOD products. The retrieval accuracy of AOD data from VIIRS is the highest in spring. MISR showed a higher EE than other products in the East Asian Ocean but also exhibited systematic underestimation. In most cases, the OMAERUV AOD product data are of better quality than OMAERO, and OMAERO overestimates AOD throughout the year. The CALIPSO AOD product showed an apparent underestimation of the AOD in different seasons (EE Below = 58.98%), but when the AOD range is small (0 < AOD < 0.1), the CALIPSO data accuracy is higher compared with other satellite products under small AOD range. In the South China Sea, VIIRS has higher data accuracy than MISR, while in the Bohai-Yellow Sea, East China Sea, Sea of Japan, and the western Pacific Ocean, MISR has the best data accuracy. MODIS and VIIRS show similar trends in R, EE within, MB, and RMSE under the influence of AOD, Angstrom exponent (AE), and precipitable water. The study on the temporal and spatial distribution of AOD in the East Asian Ocean shows that the annual variation of AOD is different in different sea areas, and the ocean in the coastal area is greatly affected by land-based pollution. In contrast, the AOD values in the offshore areas are lower, and the aerosol type is mainly clean marine type aerosol. These findings can help researchers in the East Asian Ocean choose the most accurate and reliable satellite AOD data product to better study atmospheric aerosols' impact and trends.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.